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Quantum transport on small-world networks: A continuous-time quantum walk approach
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We consider the quantum mechanical transport of (coherent) excitons on small-world networks (SWNs). The
SWNs are built from a one-dimensional ring of N nodes by randomly introducing B additional bonds between
them. The exciton dynamics is modeled by continuous-time quantum walks, and we evaluate numerically the
ensemble-averaged transition probability to reach any node of the network from the initially excited one. For
sufficiently large B we find that the quantum mechanical transport through the SWNss is, first, very fast, given
that the limiting value of the transition probability is reached very quickly, and second, that the transport does
not lead to equipartition, given that on average the exciton is most likely to be found at the initial node.
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I. INTRODUCTION

Many systems encountered in nature cannot be described
by simple lattice models. In general such systems are char-
acterized by graphs whose bonds connect sites with a wide
distribution of mutual distances. Examples can be found in
various fields, ranging from physics or biology to social
studies or computer science; see [1-3] and references
therein. More specifically, some of these systems can be de-
scribed by small-world networks (SWNs), which have large
clustering coefficients but short characteristic path lengths
[2]. The statistical properties of SWN have been studied to a
great extent and are now well understood.

A large variety of dynamical processes on graphs are re-
lated to the spectrum of the (discrete) Laplacian of the un-
derlying topological network [4—6]. For classical diffusion
on SWNs, which has been modeled, for instance, by random
walks [7,8], it was found that the probability to be still or
again at the initial site has a complex dependence on the
number n of steps; i.e., at short times it decays as a power
law of n, whereas at longer times it has a stretched exponen-
tial dependence on n. The quantum dynamics on SWNs has
been studied mainly in the framework of the localization-
delocalization transition [9,10], where one has also assumed
an additional (on-site) disorder. Here, the transition depends
on the complexity of the SWNs. A comparison between clas-
sical and quantum diffusion was given in [11], where a quan-
tum diffusion time (defined as the time where the participa-
tion ratio of the time-dependent wave function has dropped
to a certain value) was shown to be faster than its classical
counterpart. However, even here little consideration has been
given to the full set of eigenvectors of such systems, which
become important in the quantum mechanical extension of
the classical diffusion process.

To be specific, a quantum mechanical analog of
continuous-time random walks (CTRWs) can be defined by
identifying the Laplacian (or connectivity matrix) A of the
network with the Hamiltonian H. For simple lattices this
corresponds, in fact, to a nearest-neighbor hopping model
[12-16]. The transformation replaces the classical diffusion
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process by a quantal propagation of the excitation through
the network. Due to its formal similarity to CTRWs, the
procedure was dubbed a continuous-time quantum walk
(CTQW). In fact, it is known in other branches of physics
under different names, such as the tight-binding model in
solid-state physics [17] or the Hiickel (linear combination of
molecular orbitals, LCMO) model in physical chemistry
[18]. CTQWs are also closely related to so-called quantum
graphs (QGs)—see, for instance, [19-22]—whose connectiv-
ity matrix is defined in a similar way. However, QGs explic-
itly consider the bond between two nodes in the sense that
bonds may be directed and are given a varying length. Thus,
CTQWs are, to some extent, a simplified version of QGs.
Quite recently, Smilansky discussed the connections between
discrete Laplacians (equivalently, between the connectivity
matrices) on discrete QG and periodic orbits [23]. There is
certainly a large mathematical backbone on which to estab-
lish further connections; see, for instance, [24].

II. QUANTUM WALKS ON NETWORKS

Here, we consider transport processes (CTQWSs and
CTRWs) on networks, which allows us to study the two ex-
treme cases of transport processes on such structures:
namely, purely quantum mechanical (CTQWSs) and purely
classical (CTRWs) processes. Networks are a collection of N
connected nodes. The periodicity of regular networks can be
destroyed by randomly including B additional bonds into the
network. In such a way one creates “shortcuts” and a walker
can find shorter paths between pairs of sites than on the
regular network. In the following we create the SWNs by
randomly adding bonds to a regular one-dimensional ring;
see Fig. 1. However, we forbid self-connections—i.e., bonds
connecting one node with itself.

We denote by |j) a state associated with a localized exci-
tation at node j and take the set {|j)} to be orthonormal. For
CTRWs on undirected and unweighted networks the transfer
matrix is given by the (discrete) Laplacian A of the network,
by which we assume equal transition rates y=1 between all
nodes. The matrix A has as nondiagonal elements A ; the
values —1 if nodes k and j of the network are connected by a
bond and O otherwise. The diagonal elements A; ; of A equal
the number of bonds f; which exit from node j. Quantum
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FIG. 1. Sketch of a SWN of size N=16 containing B=11 addi-
tional bonds.

mechanically, the states |j) span the whole accessible Hilbert
space; the time evolution of an excitation initially placed at
node |j) is determined by the systems’ Hamiltonian
H=A and reads exp(—iHzt)|j), where we set = 1. The clas-
sical and quantum mechanical transition probabilities to go
from the state |j) at time O to the state |k) in time ¢ are given
by pyj(t) =(k|exp(-A7)|j) and by m ()= |ak,j(f)|2
= |(k|exp(~i 2, respectively. By fixing the coupling
strength between two nodes |H; . |=1, the time unit
[A/ Hjj. 1] for the transfer between two nodes is set to unity.

From the eigenvalues E, of the Hamiltonian H (or La-
placian A) follows the density of states (DOS or spectral
density) of the given system of size N,

1 N
p(E) = 521 SE-E,). (1)

The DOS contains the essential information about the system
and shows distinct features which depend on the network’s
topology. These features also carry over to dynamical prop-
erties, which in some cases depend only on the E,. For ex-
ample, the average classical probability to be still or again at
the initially excited node,

] N
5 = — S pEat
p(t)= NE , (2)

depends solely on the E, of A, but not on the eigenstates
|D,) [4 5] In the quantum case, we find a lower bound to
() = N ] 17;;(1), which also depends only on the E,
[15,25],
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N
() = |a() = 2

3)

where a(f) = EN 1 /(#). We hasten to note that the lower
bound is exact for regular networks [15,16]. The quantity
|@(1)|* given in Eq. (3) has also been derived in a different
context as being the form factor of QG [19].

III. CTQWs ON SWNs

We will analyze the general behavior of CTQWs on
SWNs by averaging over distinct realizations R:

1 R
€= g2l )

where the index r specifies the rth realization of the quantity
in question. In so doing we obtain statistical results which
allow for a comparison with the classical ones. In particular,
we will consider the realization-averaged transition prob-
abilities (m;(1))g, the averaged probabilities (7(7))g, their
lower bound (a(t))g, and their classical analog {p(t))g. Fur-
thermore, we also calculate the long time average (LTA) of
each quantity:

1 (7
lim—f dt--- ) . (5)
T—wT 0 R

For the numerical evaluation we make use of the standard
software package MATLAB. Specifically, we focus on SWNs
of size N=100 with B=1, 2, 5, and 100 additional bonds; the
ensemble average is, in general, performed over R=500 re-
alizations, which guarantees a sufficiently large number of
samples under manageable computing times.

A. Random matrix theory

Before going into the details of our analysis, we like to
point to the differences and similarities of SWNs with other
approaches to study quantum transport processes. Classical
transport over SWNs differs from that over other systems,
such as regular lattices or fractal networks, in that the trans-
port becomes faster: While the probability to return to the
origin decays as !> for regular networks, it decays as a
stretched exponential for SWNs [7,8], vide infra Fig. 5(a).
While the classical dynamics over SWNs is by now well
understood, little is known about the quantum dynamics on
such networks.

In general, several dynamical properties of networks de-
pend only on the DOS of the system’s Hamiltonian [26]. We
choose the additional bonds of our SWNs randomly; thus,
the corresponding Hamiltonian will have entries at random
positions in the matrix. This has to be distinguished (to some
extent) from random matrix theory (RMT) [27]. However,
there are also similarities between RMT and SWNs. The
DOS of SWNs have been compared to RMT in [28], where it
was found that the level spacing AE=(E,,;—E,) of the DOS
of SWNs can be fitted by the so-called Brody distribution,
which interpolates between Poissonian and Wigner-Dyson
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FIG. 2. (Color online) DOS p(E) (a)—(d) and level spacing distribution P(AE) (e)-(f) of SWNs with N=100 nodes and B=1 [(a),(e)], 2
[(b),(D], 5 [(c),(2)], and 100 [(d),(h)] additional bonds. The lower panels (e)-(g) show also the Poissonian (dashed line) and Wigner-Dyson
(dash-dotted line) statistics; panel (h) shows fits of the tails of P(AE) with different exponentials.

level spacings statistics; see [28] for details. The SWN con-
sidered in Ref. [28] is a Watts-Strogatz network, obtained by
randomly permuting the bonds of a regular one-dimensional
network. The eigenvalue statistics of random networks have
been studied in Ref. [29] and in the works referenced therein;
the quantum dynamics on regular disordered networks has
been considered in [30].

Now, the DOS of a SWN differs from that of networks
whose sites have been totally randomly connected; the DOS
of the latter networks follow Wigner’s semicircle law. Figure
2 shows for SWNs with N=100 nodes and B=1, 2, 5, and
100 additional bonds histograms of the (average) DOS p(E)
and of the level spacing distribution P(AE), where AE is
normalized in such a way that the average AE=1. While for
small B the DOS barely changes, the level spacing distribu-
tion shows more drastic changes; see Figs. 2(a)-2(c) and
2(e)-2(g). The appearance of large isolated eigenvalues re-
sults in a nonvanishing P(AE) for large AE. In Figs.
2(e)-2(h) [plots of P(AE)] we also show the Poissonian
[exp(-AE), dashed line] and Wigner-Dyson (7(AE/2)
Xexp[—m(AE/2)?], dash-dotted line) statistics. While P(AE)
roughly follows the Poissonian statistics for B=1 [Fig. 2(e)],
this is not the case when increasing B. Especially the tail of
the distribution P(AE) is better fitted by the Wigner-Dyson
statistics [Figs. 2(f) and 2(g)]. However, when increasing B
to the order of N [Fig. 2(h)], the tail of P(AE) decays neither
as exp(—AE) (dashed line) nor as exp(—AE?) (dash-dotted
line), but rather as exp(-AE*), with u=1.2 (solid line).

Thus, the complexity of the DOS of SWNs (compared, e.g.,
to the semicircle law) leads to dynamical properties of the
SWNs not all of which can be captured by RMT.

B. Transition probabilities

The ensemble average of the transition probabilities
(mj(1))g allows a first glimpse at the behavior of CTQWs on
SWNs. Figure 3 shows (m;(t))g for several SWNs with N
=100 nodes and different B. Note that due to the ensemble
average we can choose the initial node j freely, and we thus
take j=50. In the absence of any additional bond, the exci-
tations travel along the ring and interfere in a very regular
manner, producing discrete quantum carpets [ 14]. Typical for
these carpets is that they show, depending on N, full or par-
tial revivals at specific times [14].

For SWNs the situation is quite different. Already a few
additional bonds obliterate the quantum carpets; the patterns
fade away. By adding more bonds, only the initial node re-
tains a significant value for (7;;(t))x at all times ¢. Further-
more, already for SWNs with as little as B=5 the pattern of
(m;;(t))r becomes quite regular after a short time; see Fig.
3(c). This almost regular shape is reached very quickly when
B gets to be comparable to N [Fig. 3(d)]. We note, however,
that particular realizations may still show (depending on
their actual additional bonds) strong interference patterns.
These features are washed out by the ensemble average, so
that only the dependence on the initial node stands out. We
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will return to the discussion of the transition probabilities
(m;(1))g in Sec. I D.

For the ring the LTA can be calculated analytically. De-
pending on whether N is even or odd, the LTAs are slightly
different [14]. For even N (superscript e) there are two
maxima at k=j and at k=j+N/2, both having the value
X,i’jElimTﬁwlegdth,j(t)=(2N—2)/N2; this is due to the fact
that the number of nodes from j to j+/N/2 is the same in both
directions, which leads to constructive interference. On the
other hand, for odd N (superscript o) there is only one maxi-
mum at k=J, XZ,j:(ZN— 1)/N.

Figure 4 shows (x; )z for SWNs of size N=100 with B
=1, 2, 5, and 100. For B=1 and fixed j, the two peaks of the
regular network turn into a main peak and into a much
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FIG. 3. Time dependence of the av-
eraged transition probabilities (7;(1))g
for SWNs of size N=100 with (a) B
=1, (b) B=2, (c) B=5, and (d) B=100.
The initial node is j=50 and the num-
ber of realizations is R=500.

time t

weaker side peak at k=j+N/2. This structure is still (barely)
visible for B=2. Already for B=5 the side peak has practi-
cally vanished; see Fig. 4(c). While for B=1, 2, and 5 also
structure around the main peak is visible, for B=100, the
(Xk)x are sharply peaked at k=j. We stress that this should
not be confused with the Anderson localization, since there is
a nonvanishing probability to go from node j to all other
nodes k # j. The sharp peak of (7;(1))x at the initial node j is
only the result of ensemble averaging.

C. Return probabilities

Since CTQWs on SWNs always carry information of their
initial node j, the averaged probabilities to return to j are a

—
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FIG. 4. Long-time average (x; ;)z for SWNs of size N=100 with (a) B=1, (b) B=2, (c) B=5, and (d) B=100. The number of realizations
is R=500. Dark regions denote large values of (x; ;)r and bright regions low values of {xy ;).
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FIG. 5. (Color online) Time dependence of the averaged prob-
abilities (a) (p(£))g, (b) (7(£))g, and (c) {|@(r)|*)g for SWNs of size
N=100 with B=1, 2, 5, and 100. The number of realizations is R
=500.

good measure to quantify the efficiency of the transport on
such networks [25].

Figure 5 shows in double-logarithmic scales the ensemble
averages (p(t))g, (7(1))g, and (a(r))r for SWNs with N
=100 nodes and B=1, 2, 5, and 100. For classical transport
[Fig. 5(a)] the initial decay of {p())g occurs faster for larger
B. The decay at intermediate times follows a power law
(£72) for the ring (as is clear from the linear behavior in the
scales of the figure) and changes to a stretched exponential
type when B is large [7]. Thus, a classical excitation will
quickly explore the whole SWN, so that it will occupy each
site with equal probability of 1/N already after a relatively
short time, see the final plateau in Fig. 5(a).

Quantum mechanically, however, the situation is more
complex. Let us start with the ensemble average (7())g,
shown in Fig. 5(b). For a ring of N nodes (B=0) and for
times smaller than roughly N/2, (7(1)), displays a quasiperi-
odic pattern, the maxima of which decay as r~!. At longer
times interference sets in and leads to an irregular behavior at
times larger than N/2 [25]. Now, for SWNs, as long as B is
considerably less than N, the periodic pattern still remains
visible; in Fig. 5(b), one can follow how an increase in B is
smoothing out the curves, so that both the heights of the first
maxima and the depths of the minima decrease. At longer
times the SWN patterns are flattened out and (77(¢)); tends
towards a limiting value. With increasing B this asymptotic
domain is reached more quickly. To emphasize this point we
display in Fig. 6 in an enlarged scale the data of Fig. 5(b) in

PHYSICAL REVIEW E 76, 051125 (2007)

FIG. 6. (Color online) Close-up of Fig. 5(b) for short times 7
=1,...,100.

the time interval [1,100]. Clearly, for larger B the crossover
from the quasiperiodic behavior at short times to a smoothed
out pattern at longer times is shifted to smaller .

In Fig. 5(c) we plot the lower bound of 7(¢), namely
(|@(1)|*) averaged over the realizations. We note that the
overall behavior of Figs. 5(b) and 5(c) is quite similar. How-
ever, the limiting values at long times differ. For the LTA of
(7(t))r we have [see also Eq. (17) of Ref. [31]]

_ Y
(Xr= }‘f}j fo dr(t) )

1
=— SE, . —E, )G, YD, M, (6
RN 2 ( n,r n ,r)|<.]| n,r><.]| n,r>| ()

. ’
r.j.n.n

where 8E,,—E, )=1 for E, ,=E, , and 8E,,—E,,)=0
otherwise. For (|@(1)|*)x the long-time values for different B
collapse to one value. In fact, the LTA of {|a(t)|*)x obeys

ot 1
<}Tirf0 dila(r)| >R_ RN%%, SE,,—E,,), (1)
as can be immediately inferred from Eq. (3). Thus this quan-
tity is only a function of the eigenvalues E, , and does not
depend on the eigenstates |®, ). In order to quantify the
differences between Egs. (6) and (7) for SWNs, we will as-
sume that all the eigenvalues are nondegenerate (this as-
sumption is, of course, not valid for the ring; see below). In
Eq. (7) the triple sum adds then to RN, so that the right-hand
side (rhs) equals 1/N. On the other hand, Eq. (6) leads to

1
W= gy 2 11,1 (8)

This expression depends on the eigenstates; in fact, the rhs of
Eq. (8) is the ensemble average of the averaged participation
ratio of the eigenstates |®,, ). Equation (8) is well known in
the theory of quantum localization; see, e.g., Sec. V A. in
[32].

Now, Fig. 7 shows the behavior of (¥)g, according to Eq.
(6), for a SWN with N=100, 500, and 1000 nodes as a func-
tion of B/N (we restrict ourselves to even N; the case of odd
N is similar). Increasing B results in an increase of (x)g,
starting from the corresponding value for the ring (B=0, only
one realization, and N even),
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FIG. 7. (Color online) The LTA of {(7(1))x, {X)&, for SWNs with
N=100, 500, and 1000 nodes as a function of B/N.

1 2N-2
<)?rin >RE)?=_2X“=—a (9)
g N Ji N2

where ij=(2N—2)/N2. From Eq. (7) we obtain a 1/N de-
pendence for the LTA of {|@(f)|*)z, which by rescaling with
(Xring’r ~ 1/N would result in a constant value for large N.
However, rescaling ()g With (Xying)g sShows an increase with
N of (X)r/{Xring)z Which is less than linear; thus, (x)x de-
pends on N as 1/N?”, with ve[1,2]. Additionally, for larger
N (see N=500 and 1000), (x)r has a maximum value at
B/N=0.14, which is not present for smaller N (see N=100),
meaning that for this ratio of B/N the transport from the
initial node to all others is least probable, a fact which re-
mains unclear. A detailed study of the N dependence will be
given elsewhere. When increasing B to the order of N, (x)g
saturates to a plateau which increases monotonically with N.
Thus, an increase in the number of nodes leads to a less
probable transport from the initial node to all others.

We further note that with increasing B the structures of
(|@(1)|*)g and (77(t))y differ even at short times, while for the
ring the relation 77(f)=|a(t)|> holds exactly.

In Ref. [25] we showed that (p(¢)); and (7 (r)); [or
(|@(1)|*)g] can be regarded as measures for the efficiency of
the excitonic transport. When increasing B, the initial quan-
tum transport through the SWN takes place—on average—
during a very short time scale (see Fig. 3) compared to the

(EHJ>R-106 (a)

label n
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ring, where an excitation takes about r=N/2 to travel around
the ring [14]. Additionally and in contrast to the classical
case, where the limiting value is always given by the equi-
partition value 1/N, for CTQWs the limiting probability to
be still or again at the initial node increases with B. Thus, an
exciton is (on average) more likely to be found at the initial
node, a feature which is not captured by the lower bound
(|@()|*)g. Therefore, {|@(t)|*)x [as, for instance, shown in
Fig. 5(c)] does not capture fine details of the transport, which
the full expression (7 (7)) does.

D. Participation ratio of eigenstates

For the ring the eigenstates are Bloch states,

N
)= =3 e, (10)
VN j=1

from which [(k|®,)|*=1/N? follows for all |®,). By naively
inserting this result into Eq. (8) one obtains (y)z=1/N,
which differs from the exact result, Eq. (9), by a factor of 2.
The reason for this difference is that for a ring most of the
eigenvalues are doubly degenerate. For SWNs, on the other
hand, most eigenvalues are nondegenerate. The fact that, as
is evident from Fig. 7, (x)g for SWNs increases with increas-
ing B points towards a change of the [(k|®,,)|* from the value
1/N?. In order to quantify the difference to the ring case we
plot in Fig. 8 the average distribution of eigenstates,

4 (1

= 23 (01,

for SWNs with N=100 with B=1, 2, 5, and 100. From Fig. 8
we remark that the <Emi> r increase with increasing B. Addi-
tionally, the fluctuations between different values of (&, IR
become larger, too. This results in a substantial increase of
(X)r for larger B. We stress the particular role played by the
eigenstate |®y)=N""2X;|j), which corresponds to the eigen-
value Ey=0 and for which (E ;)z=1/N>. Most of the other
states contribute more to {x)g. In particular for SWNs with
large B, Fig. 8(d), one finds large values for (=, ;) close to

FIG. 8. The function (E, )z, Eq.
(11), for SWNs of size N=100 with (a)
B=1, (b) B=2, (¢) B=5, and (d) B
=100. Note the different scaling of the
z axis in (d). The number of realizations
is R=500.

0100

label n
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the band edges of E,, (i.e., for n close to 0 and close to N), in
accordance with previous work; see, for instance, Ref. [33].

The situation may be visualized as follows: For the ring
all eigenstates are Bloch states and hence are completely
delocalized. Going over to SWNs and increasing the number
of additional bonds B leads to localized states at the band
edges and to fairly delocalized states well inside the band.
The increase of (x)z shown in Fig. 6 is thus mainly due to
the localized band edge states.

The participation ratio also dominates the transition prob-
abilities (;(1))z, which were presented in Fig. 3 in Sec.
IIB. In general, the mm;(t)=|(k|exp(—iHr)|j)]* averaged
over the distinct realizations read
3 e k], D, )|

n

(T b= 3 (12)

r

Under the assumption that the eigenvalues of SWNs are non-
degenerate, we obtain for the initial node j

(mi()r = 1132 [2 |<j|q)n,r>|4

r

+ E e_i(En’r_En,’r)t|<j|q)n,r>|2|<j|q)n’,r>|2:|'

n#n'.n'
(13)

The fluctuations for larger ¢ [z-dependent sum in Eq. (13)]
become suppressed due to the ensemble average. As can be
inferred from Figs. 3(a)-3(c), when increasing B from B=0
only slightly up to B/N=0.05, the fluctuations are already
strongly suppressed. Larger values of B [see Fig. 3(d) for
B/N=1] result in a very strong peak at the initial node j.
Hence, the fluctuations at the other nodes k # j become more
and more suppressed in the ensemble average when increas-
ing B.

Now, averaging the time-independent term of Eq. (13)
over all nodes j one recovers the LTA of {(7())x [see Egs. (6)
and (8)]:

=3 3 S, ) = 0 (14)
N I R ~ < n,r X/R-
In the ensemble average, all nodes j can be considered
roughly equal; thus, every node j gives approximately the
same contribution to the sum over j and we get therefore

PHYSICAL REVIEW E 76, 051125 (2007)

(0= éEm|(j|CDn,,>|4~ (r;;(1))g. Figure 7 shows that for in-
creasing B the LTA (j)g is always larger than (2N—2)/N?
(the corresponding value for the ring), also leading to the
almost regular shape of the transition probabilities (7;(£))g
shown in Fig. 3. As noted earlier, single realizations may still
show strong interference patterns. For QGs, Kottos and
Schanz have given conditions for finding almost scarred
eigenfunctions (states with excess density near unstable pe-
riodic orbits of the corresponding classical chaotic system)
[22]. In combination with Smilansky’s work on discrete QGs
[23], it might be possible in the future to obtain similar con-
ditions for the networks considered here.

We stress again that there is no Anderson localization in
our system. Although the states are localized for large B,
there is still a nonvanishing transition probability to go from
the initial node j to all other nodes. Thus, the additional
bonds in the SWN do not prohibit the transport through the
network completely, but just hinder it. Adding disorder to our
system will essentially result in the model considered in Ref.
[10]. In this work, the Anderson model was augmented by
additional bonds, such that a SWN develops, which lead to
the localization-delocalization transition.

IV. CONCLUSION

We modeled the quantum mechanical transport of (coher-
ent) excitons on small-world networks by continuous-time
quantum walks and computed the ensemble average of the
transition probability to go from one node of the network to
any other node. The transport through the network turns out
to become faster with increasing the number of additional
bonds. Distinct from the classical case, however, where the
information of the initial node is quickly lost, quantum me-
chanically this information is preserved. During its time de-
velopment the exciton is on average most likely to be found
at the initial node. The reason for this is to be found in the
network’s eigenstates, which are localized at the band edges,
whereas they are quite delocalized inside the band.
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